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Abstract The paper deals with the investigation of a behav-
ior of a system of particles suspended in a fluid in a
container subjected to high frequency translational vibra-
tions of linear polarization. Pair interaction forces act on the
particles under these conditions. These forces decrease with
the distance and depend on the interacting particles orien-
tation with respect to the vibration direction. The presence
of these forces leads to the formation of structures in space.
The problem is solved numerically using molecular dynam-
ics method with pair interaction approximation. It is shown
that the process of the structures formation consists of the
fast stage of compact cluster formation and slow evolution
of these clusters. It is found that for vibrations of linear
polarization the particles form the chains oriented perpen-
dicular to the direction of vibrations. At long time-scales
these chains form the layers perpendicular to the direction
of the vibrations and located almost periodically all over the
fluid volume.
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Introduction

It is known that vibrations are able to exert strong influence
on the behavior of inhomogeneous hydrodynamic systems.
For instance, inclusions having higher density than den-
sity of the surrounded fluid can float up, and sink if their
density is less (Lugovtsov and Sennitsky 1986; Lyubimov
et al. 1987). In case of deformable particles linear polarized
vibrations flatten them in the direction of vibrations (Lyubimov
et al. 1996). In a non-uniform pulsational flow average
force acts to the particles suspended in a fluid. Flow non-
uniformity can be related to the presence of other particles,
in this case effective interaction of particles arises under
vibrations (Lyubimov et al. 1992, 2001). These interac-
tion forces diminish with the increase of distance between
the particles and depend on the orientation of interacting
particles pairs with respect to the vibration direction. At
small distances the viscous effects start to play important
role which may even lead to the change of the force sign
(Klotsa et al. 2007, 2009; Lyubimova et al. 2008, 2011).
Such complicated dependence of interaction force on the
distance and orientation may lead to the far distance order
in the system of particles suspended in the oscillating fluid.
In the present paper numerical investigation of the evolu-
tion of ensemble of particles in a fluid subjected to the high
frequency vibrations of linear polarization is performed.

Interaction of Two Particles

Let us consider the interaction of two similar rigid parti-
cles in a fluid subjected to a uniform imposed pulsational
flow. Gravity field is absent. We assume that the imposed
pulsational flow frequency w is such high that the thickness
of Stokes boundary layer § = (v/a))l/ 2 near the particle
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surfaces is small in comparison with the average distance
between the particles and with the particle size. This allows
to consider the flow as inviscid everywhere except for
the vicinity of particles. At the same time, vibrations are
assumed to be non-acoustic which allows to consider the
fluid as incompressible. Equations for the pulsational flow
can be linearized if the vibration amplitude is small in
comparison with the average distance between the parti-
cles and with the particle size. In terms of non-dimensional
parameters this means that the Reynolds number is small
in comparison with the dimensionless vibration frequency
(Lyubimova et al. 2011).

Pulsational field around a particle is non-uniform due to
the presence of second particle. In the leading order, this
field can be represented as the sum of uniform imposed
pulsational field Vo, and non-uniform pulsational field v,
scattered on the second particle:

V="Voo + Vr

Velocity of a particle motion in oscillating fluid can be
represented as

0= Re(ﬁei 1)

According to the assumptions introduced above, the flow
is considered as potential v, = V¢, thus it is determined
from the following equation and boundary conditions
Ap =0, d¢/onl; = uy ey
or in terms of pulsational flow potential amplitude ® related
to ¢ as ¢ = Re (e’ ©'):

AD =0, od/on|, = U, 2)

The solution to the Laplace equation (2) is sought in the
form

A7

o = - 3)
r

(dipole approximation).

Satisfying the boundary conditions we obtain for v,
> Ps — P ?’oo T’oo T
v, =R [ _3 7 4
' P+ 2p; <r3 rd ) @

Here it is taken into account that the velocity of spherical
particle subjected to a uniform imposed pulsational field is
(Landau and Lifshitz 1987):

3p .
5
:0+2,0XVOO ©)
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To determine the energy of the pulsational field we need
to calculate the squared pulsational velocity

V=12 -V, 0P (©6)
In Eq. 6 it is sufficient to take into account only interferen-
tial term since the first term is spatially uniform, therefore
it does not give any contribution into the force and the last
term is of the higher order of smallness with respect to the
ratio of particle size to the distance to this particle.

Thus, we have for the squared pulsational velocity:

Y
DY Y St - SN Ui B %)
p+2ps \ 13 r’

and for its gradient:

w2 = R3S P
o+ 2ps
SN (V) LI (V) SV
X <—r—5}’+5 r7 r — 2 r5 ) (8)

Taking into account that Vo, = }aa) cos wt, introducing
the unit vector T = 7/r in the direction from the particle
under consideration to the other particle and the angle ¢
between the axis of vibrations and the line connecting the
particles ] - T = cos ¥ and averaging over vibration period
we obtain

V12 = 3a20?R? Ps —
o+ 2ps

p (5cos?® — 1. cos v -
1 T—2 Jj

r r4

C))

In a particular case of tangential vibrations (¢ = 0) we
have

V2 = 62’ P2 L T (10)
p+2psr
and in the case of normal vibrations (¢ = 7/2):
V2 = 32 RP L T (11)
o +2p5r

The average force acting to a spherical particle in a
non-uniform pulsational velocity field was calculated using
assumptions formulated above in Krasilnikov and Krylov
(1984) (see also Lyubimov et al. 2002):

.3 gy =
F=2vp =P gp (12)

4 " pg+ i

Here p is the fluid density, p; is the density of particle, V is
the particle volume. This formula does not take into account
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the viscosity, thus it is valid for large enough distances from
the particle (large in comparison with the Stokes boundary
layer thickness).

As one can see from Eqs. 9-12, for large enough dis-
tances between the particles we have repulsion for tan-
gential vibrations and attraction for normal vibrations. For
arbitrary angles between vibration axis and the line connect-
ing the particles, the interaction force component normal
to the line connecting the particles is non-zero. It turns the
particle pair.

At small distances the viscous deceleration of pulsational
flow between the particles is at work. It leads to the change
from attraction to repulsion for normal vibrations (Klotsa
et al. 2007, 2009; Lyubimova et al. 2011, 2008) and con-
trary to that for the tangential vibrations (Lyubimova et al.
2008).

Ensemble of Particles

Let us consider now ensemble of particles. Each particle
is subjected to the influence of the pulsational fields of all
the other particles. In the leading order with respect to the
ratio of particle size to the distance between the particles it
is sufficient to take into account interferential terms of the
imposed flow and pulsational field scattered on the parti-
cles. This means that in the calculations of interaction force
it is possible to implement pair-wise approximation.

In this approximation, for the inviscid case, using Egs. 9
and 12, we obtain for the force acting to the i —th particle:

- - . 3mi, CW?2
Fr=>fu fam——etlZT
k

Tik

. . - 2
X I:Tik +2 (j . Tik) j—=35 (j . Tik) Tik:|

(13)
where W = aw is the amplitude of the velocity of the
imposed pulsational flow,

T 3 ps—p R ps—0p
Tk = —Myp=pV—->-—,C=F——
Tik 2 ps+0.5p 2 ps+0.5p

Let us now account for the viscosity. It is convenient to
decompose the force of pair interaction into two orthogonal
components: radial component ﬁ parallel to the vector T
and responsible for the change of distance between the parti-
cles and the component fn orthogonal to ft and responsible
for the change of orientation of particle pair.

Taking into account the asymptotics (13) for large dis-
tances between the particles and the results (Klotsa et al.
2007, 2009; Lyubimova et al. 2008, 2011) on average force

sign change at the distances of the order of Stokes length,
we introduce the following approximation for f; and f,:

fo =3mi ,CWR, (1) T, 0) T,
o (r—a)

1 _ 2
m, T[ (8) =1 3cos (9) (14)

R: (r) =

fo = 3mi ,CW?R, (r) T, (0) i,

o (r—a) .
P+p+e)’

a(ry—a)

R = < ,
n) { TS Bt r*}

T, (0) = sin (6) cos (0) (15)

where ry, @, a, B, € are empirical parameters.
Equations of motion for each particle are the following:

mR; = f.—bR;, i=T1,N, (16)

where b is the dissipation coefficient. The second term on
the right hand side of Eq. 16 is responsible for the viscous
friction force and f; is given by Eqgs. 14-15.

Numerical Simulation

Numerical modeling of the dynamics of the ensemble of
particles with the interaction forces introduced in the pre-
vious section was carried out by the molecular dynamics
method. We performed numerical integration of the Eq. 16.
The particles were considered as similar. The interaction
of the particles with the container walls was neglected.
The calculations were performed for two-dimensional case.
Parameters r, = 1.2 - R, @« = 40 Bela,a =03, B =
(2 —5a) /16 (a + ¢), ¢ = 0.5 were adjusted with respect to
the results (Klotsa et al. 2007, 2009; Lyubimova et al. 2008,
2011).

Two variants of initial distributions of particles over
the computational domain were considered: random and
compact.

For random initial distribution of particles numerical cal-
culations were carried out for fixed values of the vibration
amplitude @ = 0.01 and particle radius ro = 0.5; vibra-
tion frequency was varied in the range w = 1,000 = 4,000,
the dissipation coefficient in the range b = 0.2 = 1. The
number of particles was 100. The calculations show that
temporal evolution of the particle ensemble from the initial
state consists of two stages: fast formation of the clusters
including small number of particles and very slow evolution
of these clusters. Each cluster forms the chain orthogonal to
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the direction of vibrations, then clusters gradually create the
layers separated from each other by the zones free of parti-
cles. Duration of the first stage decreases with the increase
of vibration frequency and with the decrease of dissipation
coefficient. The larger number of particles in the volume
the faster cluster formation is observed. Typical steps of the
first stage of the process are shown in Fig. 1. Numerical
results well correspond to the experimental results (Klotsa
et al. 2007). The second, slow, stage was not analyzed

Fig.1 Temporal evolution from

random initial distribution.

Upper picture—initial

distribution, middle—stage

of cluster formation,

lower—formation of layers from

clusters. N = 100, a = 0.01,

w =2,000,r9=0.5,b=0.6.

Pictures are taken at t = 0, '
t =200, t = 7,830
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for random initial distribution of particles because of time
consuming.

For the compact initial distribution the calculations were
performed at fixed values of all parameters: a = 0.01, v =
2,000, ro = 0.5, b = 0.6. The number of particles was taken
to be 30. In this case it was possible to study the particles
dynamics up to the large enough time-scales. The results are
presented in Fig. 2. The calculations show that after forma-
tion of clusters, the slow process of there motion and joining
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Fig. 2 Temporal evolution from
a compact initial distribution.
Upper picture—initial
distribution, middle—stage

of cluster formation,
lower—formation of layers
from clusters and growth of the
size of domain including the
particles. N =30, a = 0.01,
w=2,000,r9 =0.5,b=0.6.
Pictures are taken at t = 0,

t =50, t = 25,000

is observed. This process is accompanied by the increase of
distance between the particle layers.

Conclusions

e Vibrations lead to the formation of structures in the
ensemble of particles suspended in a liquid.

srrwren

Under high frequency vibrations of linear polarization
the particles are concentrated in the layers orthogonal
to the vibration direction.

Pattern formation discussed in the present paper reflects
the existence of orienting effect of high frequency
vibrations discussed for the first time in Lyubimov et al.
(1997).

@ Springer



126

Microgravity Sci. Technol. (2013) 25:121-126

References

Klotsa, D., Swift, M.R., Bowley, R.M., King, P.J.: Interaction of
spheres in oscillatory fluid flows. Phys. Rev. E 76, 056314
(2007)

Klotsa, D., Swift, M.R., Bowley, R.M., King, P.J.: Chain formation
of spheres in oscillatory fluid flows. Phys. Rev. E 79, 021302
(2009)

Krasilnikov, V.A., Krylov, V.V.: Introduction to Physical Acoustics,
Nauka, Moscow (1984) (in Russian)

Landau, L.D., Lifshitz, E.M.: Fluid mechanics. Course Theor. Phys. 6,
552 (1987)

Lugovtsov, V.A., Sennitsky, V.L.: Motion of a body in a vibrating
liquid. Soviet Physics. Doklady 31(7), 530 (1986)

Lyubimov, D., Cherepanov, A., Lyubimova, T.: Behavior of a drop
(bubble) in a non-uniform pulsating flow. Adv. Space Res. 29(4),
667 (2002)

Lyubimov, D.V., Lyubimova, T.P., Cherepanov, A.A.: On a motion
of solid body in a vibrating fluid. In: Zhukhovitsky, E.M. (ed.)
Convective Flows, pp. 61-70 (1987)

@ Springer

Lyubimov, D.V., Cherepanov, A.A., Lyubimova, T.P.: The motion of
solid body in a liquid under the influence of a vibration field. In:
Reviewed Proc. of the First Int. Symp. on Hydromechanics and
Heat/Mass Transfer in Microgravity, pp. 247-251. Gordon and
Breach (1992)

Lyubimov, D.V., Cherepanov, A.A., Lyubimova, T.P., Roux, B.: Defor-
mation of gas or drop inclusion in high frequency vibrational field.
Microgravity Q. 6(2-3), 69 (1996)

Lyubimov, D.V., Cherepanov, A.A., Lyubimova, T.P.,, Roux, B.: Ori-
enting effect of vibrations on the interfaces. C.R.A.S. 325(11 b),
391 (1997)

Lyubimov, D.V., Cherepanov, A.A., Lyubimova, T.P., Roux, B.: Vibra-
tion influence of a two-phase system in weightlessness conditions.
J. Phys. IV 11(Pr6), 83 (2001)

Lyubimova, T., Cherepanova, A., Lyubimov, D.: Behaviour of drops
and bubbles in non-uniform pulsational flows. In: Danier, J., Finn,
M.D., Mattner, T. (eds.) XXII International Congress of Theo-
retical and Applied Mechanics (ICTAM 2008, Adelaide), p. 173.
Abstracts book (2008)

Lyubimova, T., Lyubimov, D., Mikhail Shardin, M.: Interaction of
rigid cylinders in a low Reynolds number pulsational flow.
Microgravity Sci. Technol. 23(3), 305 (2011)



	Particle Dynamics in a Fluid Under High Frequency Vibrations of Linear Polarization
	Abstract
	Introduction
	Interaction of Two Particles
	Ensemble of Particles
	Numerical Simulation
	Conclusions
	References


