
Journal of Magnetism and Magnetic Materials 441 (2017) 604–608
Contents lists available at ScienceDirect

Journal of Magnetism and Magnetic Materials

journal homepage: www.elsevier .com/ locate/ jmmm
Research articles
Mechanisms of fast coherent magnetization inversion in
ferronanomagnets
http://dx.doi.org/10.1016/j.jmmm.2017.06.045
0304-8853/� 2017 Elsevier B.V. All rights reserved.

⇑ Corresponding author.
E-mail address: andrey.baydin@vanderbilt.edu (A. Baydin).
A. Baydin a,⇑, V. Henner b,c,d, G. Sumanasekera c

aDepartment of Physics and Astronomy, Vanderbilt University, Nashville, TN 37235, USA
b Perm State University, Department of Physics, Perm 614990, Russia
cUniversity of Louisville, Department of Physics, Louisville, KY 40292, USA
d Perm Technical University, Department of Mathematics, Perm 614990, Russia

a r t i c l e i n f o a b s t r a c t
Article history:
Received 21 November 2016
Received in revised form 4 March 2017
Accepted 7 June 2017
Available online 10 June 2017

Keywords:
Coherent magnetic relaxation
Ferronanomagnets
Radiation friction
Radiation damping
Landau-Lifshitz relaxation
Magnetic nanoparticles have a wide range of potential applications. The fast magnetization inversion is
the goal of magnetic recording and other data storage, logic and communication applications operating at
GHz frequencies. Here, we present theoretical studies on mechanisms of fast coherent magnetization
inversion in the system of ferromagnetic nanoparticles composed of molecules or clusters with high mag-
netic moments. The possibilities to accelerate magnetic relaxation are considered: the feedback field
from a resonator, radiation friction and Landau-Lifshitz relaxation. Equations of motion for the interpar-
ticle dipole-dipole interactions are solved numerically and the role of these relaxation mechanisms has
been examined. Radiation friction is shown to be an important factor at certain conditions.

� 2017 Elsevier B.V. All rights reserved.
1. Introduction

Traditionally, the relaxation in a ferromagnetic system is
described by Landau-Lifshitz (LL) term in the equation for a macro-
scopic magnetic moment [1]. Besides this, other mechanisms are
possible to occur and can lead to faster relaxation and magnetiza-
tion reversal than LL relaxation alone. These mechanisms are based
on coherent relaxation and to study them one needs to consider
the dynamics of individual magnetic moments interacting with
each other in some common magnetic field.

Coherent phenomena can occur in a magnetic system when
magnetic moments are in common electromagnetic field with
wavelength comparable to or exceeding the size of the system.
Research in this field has been started from Dicke’s paper [2] on
superradiation (SR), major characteristic of which is proportional-
ity of the radiation intensity to the number of radiators squared.
Later the concept of optical SR has been extended to study the
coherent relaxation in magnetic systems.

In the case of ferromagnetic particles, fast inversion of the mag-
netic moment is the goal of magnetic recording and other data
storage, logic and communication applications operating at GHz
frequencies. In a medium composed of particles (magnetic centers)
with large magnetic moments (104 � 105 Bohr magnetons), mag-
netization inversion can be accelerated quite substantially. In this
work, we consider the interaction between ferromagnetic particles
(clusters, nanoparticles) with the particle magnetic moments of
the order of 104 Bohr magnetons. Such a large particle magnetic
moment results from spins inside the nanoparticle coupled by
exchange interactions.

Bloembergen and Pound [3] showed that fast magnetization
reversal could be realized if a sample is coupled with a resonator
electric circuit tuned to the frequency of magnetization precession.
This mechanism is often called radiation damping (RD). If initially a
system is in non-equilibrium state with the average magnetization
slightly deflected (in classical picture) from the direction of the
external constant magnetic field, then returning to the equilibrium,
magnetization evolution induces an electric current in the res-
onator (coil) that affects the system due to generated feedback
magnetic field. This field under some circumstances causes the
coherence between individual magnetic moments that results in
fast relaxation [4–8].

Another mechanism of relaxation is related to the radiation fric-
tion [9–12]. In the case of ferromagnetic nanoparticles, the parti-
cles in the ensemble interact mostly through dipole forces. In
macroscopic terms, the motion of the magnetic moment of a crys-
tal composed of such molecules leads to the radiation of electro-
magnetic waves which feedback influence creates the radiation
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friction force (Lorentz force). At low temperature, when the time of
transverse relaxation T2 (most usually due to dipole-dipole inter-
actions) is large, contribution to the relaxation by means of the
radiation friction can be substantial [9]. The process of radiation
is coherent when the linear sample size is smaller than the radia-
tion wavelength so that the phase of emitted photons is the same
throughout the sample. The relaxation time due to radiation fric-
tion is determined by

TR � c3

cj jx3
0M

; ð1Þ

where x0 ¼ cj jH0;H0 is the constant external magnetic field, M is
the total magnetic moment of a sample, c is the speed of light,
and c is the gyromagnetic ratio. This time is obtained by the expan-
sion of the radiation field in powers of 1=c [11,12]. At favorable con-
ditions TR can be significantly shorter than T2. Estimations are made
at the end of Section 2.

2. Equations of motion

Equations of motion for each magnetic moment of the system
can be written as follows:

_lðkÞ ¼ �jcjlðkÞ � bfHðkÞ þ 2
3c3

XN
j

l
...ðjÞ

 !
�ajcj
lðkÞ lðkÞ � lðkÞ �HðkÞ

� �� �
:

ð2Þ
Here a is Landau-Lifshitz (LL) damping coefficient. The term

with l
...

describes electromagnetic radiation friction and appears
as an expansion of retarded potential in powers of
x0V

1=3=c � V1=3=k [10,11]. The sum represents common macro-
scopic electromagnetic field coherently radiated by individual

magnetic moments. HðkÞ in Eq. (2) is the effective magnetic field
that consist of the following terms:

� the constant external magnetic field H0 along Oz axis,
� the anisotropy field HA ¼ HA=lð Þ l � nð Þn;HA ¼ 2EA=l , where n
is a unit vector of the easy axis that has direction of Oz axis
and EA is the particle anisotropy energy,

� the feedback field H ¼ H;0;0ð Þ generated by the current
induced in the coil which axis is chosen along Ox axis,

� the dipolar magnetic field Hd caused by the interparticle dipole-
dipole interactions.

Thus, the effective magnetic field acting on the kth particle is

HðkÞ ¼ H þ Hk
dx;H

k
dy;H0 þ HA þ Hk

dz

� �
. The local dipolar field HðkÞ

d at

the site of kth particle with the pairwise dipole-dipole energy Udd

is defined as HðkÞ
d ¼ �@Udd=@lðkÞ, where

Udd ¼
XN
k;m
k>m

lðkÞ � lðmÞ� �
r3km

� 3 lðkÞ � rkm
� �

lðmÞ � rkm
� �

r5km

" #
; ð3Þ

rkm is the vector connecting kth and mth particles (magnetic cen-
ters) and N is the number of particles.

In order to find an expression for l
...
we assume that the fastest

motion of magnetic moments occurs around the field H0 þ HAð Þn.
Thus, taking the first derivative of Eq. (2) in the zero-th order
and iterating we obtain the expression for the third derivative of
the magnetic moment of kth particle:

l
... ðkÞ ¼ jcj3 H0 þ HA

lðkÞ
z

l

 !2

lðkÞ � H0 þ HA
lðkÞ

z

l
n

 !
: ð4Þ
Substituting l
... ðkÞ in Eq. (2) we obtain the equations of motion

for the components of the magnetic moments:
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Let us introduce dimensionless time ~t ¼ xdt and angular
frequencies xH ¼ jcjH;xA ¼ jcjHA and xd ¼ jcjl=a3, where a is
the average interparticle distance and define dimensionless
parameters pH ¼ xH=x0 ¼ H=H0; pd ¼ xd=x0 ¼ l=a3H0 and
pA ¼ xA=x0 ¼ HA=H0.

It is important to note that the total dipolar Hamiltonian does
not commute with the Zeeman Hamiltonian. However, when it is
split into parts, the term that commutes with the Zeeman Hamilto-
nian and the total magnetic moment is called the secular term. In a
strong external magnetic field, the main part of dipole interactions
is its secular part and the magnitude of the total magnetic moment
is practically constant (with the precision less than 0.01% in our
simulations) which supports the validity of using the LL relaxation
term in Eq. (2). Thus, it is convenient to write the magnetic
moments in terms of unit vectors eðkÞ ¼ lðkÞ=l. The dimensionless
parameter n ¼ 1=xdTR shows the ratio between the radiation fric-
tion and the dipole contributions. Here TR ¼ 3c3=2 cj jx3

0Mð0Þ is the
characteristic relaxation of the radiation friction and Mð0Þ ¼ lN is
the total magnetic moment of the sample. With the above men-
tioned notations, Eqs. (5)–(7) take the following form
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Fig. 1. Time evolution of the z-component of the total magnetic moment ez under
influence of the radiation friction alone for three values of n.
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In Eqs. (8)–(10) all time derivatives are taken with respect to ~t.
The dimensionless dipole field acting on kth magnetic center is

HðkÞ
d =H0 ¼ pd

~HðkÞ
d ; ~HðkÞ

d ¼
XN
m¼1
m–k

3
~r5km

~rkm eðmÞ~rkm
� �� 1

~r3km
eðmÞ

� �
ð11Þ

where ~rkm ¼ rkm=a is the dimensionless coordinate of distance
between the magnetic centers and a is the mean interparticle
distance.

In order to get a notion of the particular situation in question, it
is instructive to have some numerical estimation. Let the particles
be made of a ferrite with the saturation magnetization Ms ¼ 400 G
and have the mean size of d ¼ 10 nm. Then the particle magnetic
moment is l ¼ 2� 10�16 emu, which is of about 104 Bohr magne-
tons. Assuming that the volume content of the particles in the sam-
ple is / ¼ 10%, for the mean interparticle distance we obtain
a � d=/1=3 � 2d. For the magnetizing field of a strength
H0 ¼ 3:3� 104 Oe, the Larmor frequency is x0 � 6� 1011 Hz,
whereas for the dipolar field parameter one gets
pd ¼ l=a3H0 � 10�3. To estimate the radiation friction contribu-
tion, let us take the sample volume of V ¼ 10�3 cm3, which gives

the number of particles: N � V/=d3 � 1014. According to formula
(1) we have the characteristic time of the radiation friction
TR ¼ c3=x3

0clN � 3:5� 10�10 s. Then, the ratio between the radia-
tion friction and the dipolar contributions is n ¼ 1=xdTR � 5 with
xd ¼ pdx0 � 6� 108 Hz. Thus, the radiation friction field can be
larger than the dipolar field and can lead to the relaxation at favor-
able conditions.

On the microscopic scale, the field of the radiation friction is
negligible compared to the dipolar field. If we let M in Eq. (1) to
be the magnetic moment of one particle then TR ! 1, according
to equation (1). Even for M ¼ 105lB, we have TR � 104 s for the
parameters considered above. Time TR can be of the order of or
even smaller than time Td only when M is considered to be the
macroscopic magnetic moment of the sample in Eq. (1)M can
remain large during the coherent relaxation caused, for instance,
by the feedback field from the resonator.

3. The feedback field equation

Considering the resonator as a LCR circuit, electric current in the
circuit changes in time due to the variations of the magnetic
moment of the system. It obeys the following equation [5]

L
dI
dt

þ RI þ 1
C

Z t

0
Iðt0Þdt0 ¼ � dU

dt
; ð12Þ

where U ¼ 4p
c ngAmx is the magnetic flux in a coil with n turns and

the cross-section area A, g ¼ V=Vc is the coil filling factor (V is the
volume of the sample, Vc is the inner volume of the coil),
m ¼ M=V is magnetization. The self-induction coefficient of a coil

of length l is L ¼ 4pn2A=lc2. The induced current generates the mag-
netic (feedback) field in the coil

H ¼ 4pn
cl

I: ð13Þ

After taking time derivative of Eq. (12) with respect to ~t, replac-
ing the current I by the magnetic field H according to Eq. (13), and
using parameter pH , we obtain the equation for the feedback field
as:

d2pH

d~t2
þ xr

x0

1
Q pd

dpH

d~t
þ xr

x0

� 	2 pH

p2
d

¼ �4pb 1
N

d2

d~t2
XN
l¼1

eðlÞx

 !
: ð14Þ

Let us express the coefficients in the Eq. (14) in terms of the LCR
circuit (resonator) parameters: 2cr ¼ R=L ¼ xr=Q ;xr ¼ 1=

ffiffiffiffiffiffi
LC

p
,

where Q is the quality factor,xr is the resonator natural frequency.
The coefficient b

b ¼ gNl=ðVH0Þ ð15Þ
defines the intensity of the coupling of magnetic moments with the

coil. Using the estimation for the interparticle distance a � ðV=NÞ1=3
and the definition of the parameter pd ¼ l=a3H0, the parameter b
can be represented as gpd.

The feedback field increases slowly as soon as the system of
magnetic moments, which are initially in non-equilibrium state,
begins its transition to the equilibrium state. The field reaches
maximum value when z-component of the total magnetic moment
passes through the zero value. The feedback field results in coher-
ence in the system, which is a collective phenomenon as it includes
contributions from each individual magnetic moment. This leads to
significant acceleration of the relaxation (ideally N times). In con-
trast to the dipolar interactions, which lead to the disordering of
individual magnetic moments, the passive resonator and the radi-
ation friction result in their collective relaxation from the non-
equilibrium to equilibrium state.
4. Results and discussion

In the Figs. 1–5, the evolution of the z-component of the net

polarization ezðtÞ ¼ 1
N

P
ke

ðkÞ
z ðtÞ is presented for different relaxation

parameters. Eqs. (8)–(10) and (14) were solved numerically for
fixed number N ¼ 10� 10� 10 ¼ 1000 of magnetic moments
(nanoparticles). Initial values of polarization and magnetic field
are taken to be ezð0Þ ¼ �0:95; pH ¼ 0; _pH ¼ 0. The deviation of the
initial state from the exact orientational opposition to the imposed
field is essential since the simulation scheme needs the ‘‘seeding”
torque to set the magnetic moments into motion. Parameter of
the dipolar interaction pd is set to a typical value of 0.001 and
the quality factor Q is 10 for all figures, if not noted otherwise.

First, we consider the case with no resonator (b ¼ 0) and negli-
gible LL relaxation (a ¼ 0), i.e. the relaxation is governed only by
the radiation friction. Anisotropy field at a moment is also absent
(pA ¼ 0). Results of the numerical simulation are presented in
Fig. 1. The z-component of the total magnetic moment flips during
the time of fewx�1

d (which is the characteristic dipole time). As the
contribution from the radiation friction increases (i.e. parameter
increases) the characteristic time of the inversion decreases. Thus,



Fig. 5. Effect of the anisotropy on a) the radiation friction mechanism, n ¼ 50; a ¼ 0; b ¼
n ¼ 0; a ¼ 0; b ¼ 0:001, d) n ¼ 0; a ¼ 0; b ¼ 0:01.

Fig. 4. Time evolution of the z-component of the total magnetic moment for a) the Land
Landau-Lifshitz relaxation, a ¼ 0:01; b ¼ 0; pd ¼ 0:001.

Fig. 2. Magnetization reversal caused by a) the passive resonator for n ¼ 0; b ¼ 0:001, b) the radiation friction for n ¼ 50; Q ¼ 10.

Fig. 3. Effect of the radiation friction on the time evolution of z-component of the
total magnetic moment in the presence of passive resonator for b ¼ 0:001; Q ¼ 30.

A. Baydin et al. / Journal of Magnetism and Magnetic Materials 441 (2017) 604–608 607
we can see that the radiation friction when it is comparable with
the magnitude of dipole interactions can cause magnetization flip.
However, as seen in Fig. 1, the z-component of the total magnetic
moment does not reach unity. This can be explained as follows.
The only relaxation mechanism that preserves the magnitude of
the magnetization is the Landau-Lifshits mechanism. Other mech-
anisms do not. The total dipolar Hamiltonian (its non-secular part)
does not commute with the Zeeman Hamiltonian and this is why
the z-component of total magnetization can deviate from unity
when dipole-dipole interactions are strong enough. It means that
Zeeman energy is not strictly conserved, part of it goes to the
0, b) the LL mechanism, n ¼ 0; a ¼ 0:01; b ¼ 0, c) the radiation damping mechanism;

au-Lifshitz relaxation, n ¼ 0; b ¼ 0;pd ¼ 0:001 and b) the radiation friction and the
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dipole system. The radiation friction also doesn’t conserve Zeeman
energy by dissipating it into the dipole reservoir (dipole energy).

When the system is placed in the passive resonator, i.e. b– 0,
relaxation of the total magnetic moment occurs significantly faster
compared to the case when it is governed only by the radiation
friction. Indeed, the major difference in the relaxation regime
emerges due to the presence/absence of the passive resonance cir-
cuit that envelops the system and tuned to the Larmor frequency
defined by H0. The resonator takes in all the time-changing mag-
netic fields generated by the turning magnetic moments and trans-
forms those signals into a common time-dependent field. This field
is a feedback agent that affects the magnetic moments motion and
entails some kind of synchronization in the assembly. The effect of
the radiation friction becomes comparable with the RD effect for
values of parameter n P 50 as shown in Fig. 2.

Fig. 3 shows the radiation friction effect on the evolution of the
total magnetic moment in the presence of the resonator. Clearly,
the reversal of the total magnetic moment is faster with increasing
contribution of the radiation friction mechanism described by
parameter n. In addition, oscillatory behavior of the magnetization
time evolution is suppressed.

In the case of the Landau-Lifshitz mechanism, a – 0, character-
istic time of magnetization reversal is longer than that of the radi-
ation damping and the radiation friction mechanisms (see Fig. 4a).
For the precession damping parameter a, we take typical values in
the range [0.01; 0.05]. For all simulations involving a – 0 we have
calculated the deviation in the magnitude of the individual and the
total magnetic moments to be less than 0.01%.

As shown in Fig. 4b, the radiation friction significantly affects
the time evolution of the z-component of the total magnetic
moment governed by LL mechanism.

Fig. 5 shows the effect of the anisotropy field on the time
evolution of the total magnetic moment governed by different
mechanisms. For parameters given in Fig. 5, the radiation damping
and the radiation friction mechanisms are most susceptible to the
influence of the anisotropy, whereas LL mechanism is least
influenced by the anisotropy. Thus, for magnetic systems with high
anisotropy, the main contribution to relaxation is due to the LL
mechanism.

5. Conclusion

The microscopic equations of motion with account of the radi-
ation friction, Landau-Lifshitz relaxation, the radiation damping
and the dipole-dipole interactions were formulated and numeri-
cally solved. The simulation results showed that the coupling with
the passive resonator is the fastest relaxation mechanism. Whereas
the radiation friction has a strong effect on the system in the pres-
ence of the passive resonator and the LL relaxation. When the radi-
ation friction field is stronger than the local magnetic field, the
radiation friction characteristic time of magnetization inversion
is comparable with that of the radiation damping. For the system
with high anisotropy, the main relaxation mechanism is shown
to be Landau-Lifshitz relaxation whereas both the radiation friction
and the radiation damping are suppressed. In light of the discussed
mechanisms, we showed that all relaxation processes can play an
important role in the fast coherent magnetization inversion.
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